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Self-modulation of a strong electromagnetic wave in a positron-electron plasma
induced by relativistic temperatures and phonon damping
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The modulational instability of a linearly polarized, strong, electromagnetic wave in a~unmagnetized!
positron-electron plasma is analyzed using relativistic two-fluid hydrodynamics to properly account for physi-
cal regimes of very high temperatures. The effect of phonon damping is also included in the treatment. The
theory can be reduced to a pair of extended Zakharov equations. The envelope modulation is then studied by
deriving the corresponding nonlinear Schro¨dinger ~NLS! equation, using multiscale perturbation analysis.
According to the intensity of the damping three different types of NLS are obtained. The main results are~a!
that relativistic temperatures modify the stability result found in the literature for low temperature, zero
damping,e1-e2 plasmas, and~b! that phonon damping also produces substantial changes in the NLS, which
then predict unstable envelopes. This work extends previous analyses, showing that if the phonon damping is
O~e0! orO~e1! ~e is the perturbation parameter!, a modulational instability appears in the electron-positron case
in all ranges of temperature and wave frequencies. Thus presence of some amount of sound absorption helps
to produce an envelope decay. When the phonon damping is very small@O~e2!# the self-modulational insta-
bility occurs in a finite band near the reduced plasma frequency, for ultrarelativistic temperatures.
@S1063-651X~97!14302-1#

PACS number~s!: 82.40.Ra, 51.60.1a
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I. INTRODUCTION

The literature on waves and nonlinear processes
positron-electron plasmas has grown rapidly in recent tim
in view of possible applications in the following fields. Rel
tivistic positron-electron plasmas are encountered in pu
magnetospheres and in active galactic nuclei. Surveys
these fields can be found, for instance, in Refs.@1,2# ~pulsars!
and@3,4# active galactic nuclei~AGN!. Interesting scenarios
for e1-e2 plasmas are conjectured in the physics of the ea
time Universe, i.e., 1024,t,1 s after the big bang@5–7#. In
the laboratory, nonrelativistic electron and positron trapp
in magnetic mirror experiments are presently actively p
sued@8,9#.

Linear and nonlinear waves ine1-e2 plasmas have man
properties different from electron-ion plasmas@10#, due to
the absence of high and low frequency scales associated
the electron-ion mass difference. A survey of linear waves
e1-e2 plasmas can be found in@11#, while @12# reviews
nonlinear relativistic effects in plasmas, including thee1-e2

case. Other surveys on relativistic nonlinear effects in wa
for ordinary ande1-e2 plasmas, related to the physic
mechanisms discussed in this paper, can be found in R
@13# and @14#.

Propagation and nonlinear processes associated wi
strong, linearly polarized, electromagnetic wave in an
magnetized electron-positron plasma have been studie
several authors~see, e.g.,@14–20#! since pioneering work by
Chian and Kennel@15# proposed a mechanism to expla
very short intensity variations~micropulses! of pulsar radio
emission. They suggested that a self-modulational instab
551063-651X/97/55~3!/3381~12!/$10.00
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of the electromagnetic wave may be a natural process
amplitude modulation. Gangadharaet al. @18# examined, in-
stead, a parametric instability of a weakly relativistic, ele
tromagnetic wave in thee1-e2 plasma, to explain also the
short-time variability of the radio sources. Kates and Ka
@17# in a careful analysis of the modulational instabilit
based on multiple time-space scale perturbation theory of
nonlinear electromagnetic wave in an electron-ion plasm
concluded that in the zero temperature limit the special c
of a e1-e2 plasma is stable. When a finite~classical! tem-
perature is considered, only a vanishingly small frequen
interval ~at v'vp! appears, where the instability is possib
in ae1-e2 plasma. The divergence with the results of@15# is
explained by the absence of the ponderomotive force
harmonic generation effects in that reference. In an electr
ion plasma, however, the modulational envelope instabi
of the electromagnetic wave is again possible. The nonlin
Schrödinger equation~NLS! derived in@16#, which was sup-
portive of the instability found in@15# and which included
longitudinal density variations, was found to be incorrect
@17#.

We have reexamined the problem of the self-modulatio
instability of a linearly polarized, large-amplitude, electr
magnetic wave in a ~unmagnetized! positron-electron
plasma, using a two-fluid model and taking into account
three nonlinear effects considered in@17#, i.e., ~i! relativistic
correction due to mass variation,~ii ! the ponderomotive
force that produces density changes, and~iii ! harmonic gen-
eration. Indeed, the three mentioned effects have the s
order of magnitude in a perturbation treatment and they m
all be included at the same level in the theory.

We first obtain a set of extended Zakharov-type equati
3381 © 1997 The American Physical Society
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3382 55GRATTON, GNAVI, GALVÃO, AND GOMBEROFF
@see Eqs.~31! and ~32!# for the vector potential of the wav
A coupled with phonons, i.e., with the sum of the perturb
electron and positron densityN @here A5eAx/mc2,
N5(np1ne22n0)/n0 , n0 is the unperturbed density,c the
speed of light,e.0,m the positron charge and mass, Gau
ian units are used throughout#. These equations are corre
up to orderA3 in the wave amplitude. The derivation is ca
ried through using a fully relativistic hydrodynamic two-flu
model so that both ultrarelativistic and classical random th
mal energies can be considered. In addition, we introduc
phenomenological damping in the phonon equation.

Early Universe plasma and active galactic nuclei plas
~which may or may not be magnetized! have very large tem-
peratures. The plasma of the early Universe has ultrarela
istic temperatures, i.e., the electron and positron ene
much larger than the rest mass energy, so that electrons
positrons behave dynamically as photons in the time inte
1024,t,1 sec from the big bang@7#. The damping of
phonons and longitudinal waves in a relativistice1-e2

plasma is treated in@7# and @21#.
We carry through a multiscale perturbation analysis@pa-

rametere;O(A)#, and obtain three different types of non
linear Schro¨dinger equations according to the case of fin
~order one!, O~e0!, weak, O~e1!, or ultraweak damping
O~e2!. In the first two cases we prove that absorption in
longitudinal oscillations induces a modulational instability
the electromagnetic wave in ae1-e2 plasma. In the third
case, where the NLS coincides for classical temperatu
with the one obtained in@17# with zero damping, the enve
lope instability appears again in a finite band near the r
tivistically reduced plasma frequency when the tempera
is ultrarelativistic.

Our study, thus, complements and extends the analys
@17# ~which is limited to classical temperatures and does
include damping! showing that at relativistic temperature
or when the damping of the acoustic waves becomes
evant, a modulational instability appears also in thee1-e2

case. In spite of the incomplete derivation, the process c
jectured in@15# may occur after all. However, as noted b
most of the cited authors, for pulsar applications more w
is needed to take into account the presence of a very st
magnetic field. Our paper is focused on the study of gen
theoretical consequences of relativistic temperatures
phonon damping on the modulational instability, and we
not intend to analyze here the implications for a particu
physical scenario. However, we hope the results may be
ful in several applications.

The work is presented in the following way. Section
describes the relativistic hydrodynamic fluid model. Sect
III presents the basic equations for a linearly polarized, fin
amplitude plane wave in ae1-e2 plasma. In Sec. IV we
derive the basic equation set~31! and ~32! and show its va-
lidity up to third order inA. In Sec. V we report the multiple
scale perturbation analysis and the derivation of three ty
of NLS, according to the damping intensity. For order o
damping we find a NLS with a complex cubic coefficien
For weak damping the NLS becomes an integrodifferen
equation, with the integral in the cubic~real! term. For ul-
traweak damping we get a NLS with a real cubic coefficie
~similar to that of Ref.@17#!. In Sec. VI the stability of con-
stant envelope solutions of the three types of NLS is a
d
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lyzed. The basic solutions are perturbed with a spatial mo
lation, and the dispersion relation is examined. Secti
VI A, VI B, and VI C deal with order one, weak, and u
traweak damping, respectively. In all three cases a mod
tional instability is found. Discussions and conclusions, w
a table that summarizes the NLS derived in the paper,
given in Sec. VII.

II. RELATIVISTIC POSITRON-ELECTRON
TWO-FLUID MODEL

We examine here the equations for the relativistic mot
of ane1-e2 plasma. We are interested in the behavior of t
wave in systems with very high plasma temperatures, wh
the internal energy associated with random motion cont
utes substantially to the inertia of the fluid. We extend, the
fore, the analysis of the references quoted in the Introd
tion, to a relativistic hydrodynamic treatment of the two-flu
plasma model. Thus, we work with equations valid both
classical temperatures,p!nmc2 ~p,n the pressure and num
ber of particles density, respectively! as well as for ultrarela-
tivistic energies,p@nmc2.

We use the following signature for the metric tens
ds25gmndx

mdxn, gmn5diag~1,21,21,21!, m,n50,1,2,3,
wheredxm5(cdt,dxl) ~l51,2,3, roman indices for ordinary
vectors! and denote withum5g(c,v l) the average tetra
velocity of a fluid element,g5@12~v/c!2#21/2. The energy-
momentum tensor for an ideal fluid is

Tmn5
h

c2
umun2pgmn, ~1!

whereh,p are the enthalpy and pressure fields, measure
the rest frame of each element of the fluid [ūm5(c,0)] ~for
this and other basic equations see, e.g.,@23,24#!. It is also
convenient to introducen, the number particle density an
the total energy densityE, both as quantities in the prope
frame. Then,h5E1p, andE5nmc21 ē, whereē is the in-
ternal energy of the fluid~m the proper mass of the particle!.
In general, equations of state linkē andp with densityn and
temperatureT ~T the temperature in the rest frame, in ener
units!

ē5 ē~n,T!, p5p~n,T!. ~2!

In a low energy plasma~classical limit! we have E@p,
ē5(3/2)nT, and p5(2/3)ē, while in the ultrarelativistic
limit p@nmc2 andp5~1/3!E.

The basic equation of a charged fluid in the presence
electromagnetic fields is

]nT
mn5

1

c
j nF

nm, ~3!

where j n5qnun ~q the electric charge of the particles!
and Fnm5]nAm2]mAn, indicating the tetrapotential with
Am5(f,Al) ~f the scalar potential,Al the vector potential!.
The electric and magnetic fields are given as usual
E52~1/c!]A/]t2gradf, B5rotA. The conservation of the
number of particles~and, therefore, also of charge! is written
as
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55 3383SELF-MODULATION OF A STRONG ELECTROMAGNETIC . . .
]n~nun!50. ~4!

From um]nT
mn50 one obtains the equation of adiaba

motion

dE
dt

5
h

n

dn

dt
. ~5!

In the classic limit,h5nmc21(5/3)ē, and we readily ob-
tain ē/ ē05p/p05(n/n0)

5/3 ~denoting with a subscript zer
any reference state!. In the ultrarelativistic case,h5~4/3!E,
and we have instead,ē/ ē05p/p05(n/n0)

4/3. Positron and
electrons behave dynamically as photons at ultrarelativi
temperatures. For very high temperatures,T@mc2, positrons
and electrons coexist with a high frequency\v;T photon
gas. This can be modeled with a radiation press
pr5const3n4/3 to be added to the gas pressure. Howev
positrons and electrons follow the same adiabatic law, th
fore this addition affects only the constant of the 4/3 ad
batic law. In the following we assume that this change h
been taken into account. The low frequency~\v!T! electro-
magnetic wave, instead, is treated via Maxwell equations
plasma collective effects.

The effective collision frequency in thee1-e2 plasma,
which includes recombinations and photon annihilations
assumed to be much smaller than the plasma frequency.
validity conditions of wave equations and collective plas
processes in a similar physical scenario are discussed in@7#.

Therefore, we may writep/p05(n/n0)
G, with a poly-

tropic index 4/3<G<5/3, and using Eq.~5! we obtain
h5Gp/(G21)1nmc2, ē5p/(G21) as interpolation for-
mulas that include both limits, with the understanding that
G approaches the value 5/3 we must setp!nmc2.

The temporal component of Eq.~3! gives an equation for
the time change ofg,

h
dg

dt
5
1

g

]p

]t
2g

dp

dt
1qnv•E. ~6!

The spatial components of Eq.~3! @using Eqs.~5! and ~6!#
lead to the momentum equation of the relativistic fluid:

h

c2
d

dt
~gv!52

1

g
gradp2

v

c2
g
dp

dt
1nqSE1

1

c
v3BD .

~7!

We may note the enhancement of inertia~h/c2 instead of
nm! due to internal energy and pressure, and the presenc
the extra force term originated fromdp/dt in the right-hand
side ~RHS!. There will be two equations like Eq.~7! for
positrons and electrons, and we shall writeq5se ~e.0,
positron charge! where s51 for positrons ands521 for
electrons. All rest frame thermodynamic quantities in the
sence of waves~E5B50! n0 ,p0 ,h0 ,E0 are assumed to b
constant and equal for electrons and positrons~neutral equi-
librium state with equal random energy in both species!.

III. PLANE ELECTROMAGNETIC WAVE
OF FINITE AMPLITUDE

We consider now a disturbance of a uniform equilibriu
in which all the physical quantities depend on one spa
ic

e
r,
e-
-
s

d
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he
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s

of

-

,
l

coordinatez, the direction of propagation of a linearly pola
ized, finite amplitude wave, withEx5Ex(z,t) and
By5By(z,t). Therefore we haveA5„Ax(z,t),0,0… and
v5„vx(z,t),0,vz(z,t)…, where vz(z,t) is generated by the
vxBy term of the Lorentz force. The longitudinal motio
vz(z,t) coupled with the wave is accompanied by a dens
variation n(z,t), and a longitudinal electric field
Ez(z,t)52]f(z,t)/]z. In the following we use a nondi-
mensional form for the potentialsA[eAx/mc2, w[ef/mc2,
and for the sake of simplicity in notation we use the sa
symbol for positron and electron quantities likev or n, al-
though it is clear that they may be different during the ev
lution of the disturbance.

The assumed symmetry leads to an important invarian
the motion by considering thex component of Eq.~7!:

h

c

d

dt
~gvx!52

gvx
c

dp

dt
2snmc2

dA

dt
. ~8!

Noting that Eq.~5! is equivalent to

1

n

dp

dt
5

d

dt S hnD ~9!

we write Eq.~8! in the form

d

dt F h

nmc2 S g
vx
c D1sAG50. ~10!

Considering that the fluid velocityvx must be zero when
A50, we can write

h

nmc2
g
vx
c

52sA. ~11!

Finally from Eq.~11! it follows that

g25
11~nmc2/h!2A2

12~vz /c!2
, ~12!

The z component of Eq.~7! can also be elaborated in
convenient form,

h

c2
d

dt
~gvz!52

1

g

]p

]z
2

gvz
c2

dp

dt

1nmc2sS 2
]w

]z
1
vx
c

]A

]z D . ~13!

Using Eqs.~9! and ~11! we obtain

1

c

d

dt S h

nmc2
g
vz
c D52

1

gnmc2
]p

]z
2s

]w

]z

2
nmc2

gh

]

]z SA2

2 D . ~14!

The pressure gradient term in Eq.~14! contains the numbe
density as measured in the laboratorynL5gn that appears
also in the continuity equation

]

]t
~gn!1

]

]z
~gnvz!50, ~15!
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which follows from Eq.~4!.
Finally the potentials of the wave satisfy the equations

S ]2

]t2
2c2

]2

]z2DA5
4pe2

m ( snL
vx
c
, ~16!

c
]2w

]z]t
5
4pe2

m ( snL
vz
c
, ~17!

where the sum symbol is over positron and electron qua
ties. The set~9!, ~11!, ~14!–~17! and the thermodynamic
properties~Sec. II! complete the set of equations for a plan
linearly polarized, finite amplitude, electromagnetic wave
a relativistic positron-electron plasma.

IV. WEAKLY NONLINEAR WAVES

Here we derive a reduced set of equations for the s
motion approximation of relativistic dynamics, i.e., wheng
can be approximated byg>11~1/2!~v/c!2. The basic idea is
that when«;O(Anmc2/h) is assumed to be small then a
cording to Eq.~11!, vx/c;O(«). We can define an effective
particle mass,m* , enhanced by the relativistic temperatu
effect asm* c25h/n, and note that the expansion parame
« is a measure of the ‘‘quiver velocity’’~peak oscillation
velocity ofe1-e2 in the driving field! in units of the speed o
light, «5ueE0xu/(m*v0c)!1, v0 being the frequency and
E0x the electric field amplitude. For low temperature
p!nmc2, the effective mass coincides with the rest mass
that « is the ratio of the classical ‘‘quiver velocity’’ to the
speed of light. Thus,«;O(A)!1 is also a measure of th
amplitude of the wave. However, for ultrarelativistic tem
peratures, sinceh@nmc2, A is not necessarily small and ca
take values of order one.

Hence, we consider now weakly nonlinear waves, ke
ing systematically all significant terms up to order«3, and
neglectingO~«4! contributions. To this order of approxima
tion the equations of Sec. III reduce to a pair of nonline
coupled equations forA andN[((nL2n0)/n0 .

If vx/c;O(«), we can verify from Eq. ~14! that
vz/c;O(«2). In fact, assuming that (vz/c)

2;O(«4), Eq.
~12! shows that

g2511S nmc2

h
AD 21O~«4! ~18!

and, therefore, from Eq.~11!

vx
c

52s
nmc2

h
AF12

1

2 S nmc2

h
AD 2G , ~19!

neglecting terms in«4 only. Several terms drop in Eq.~14!,
given the assumption thatvz/c is already of order«

2, i.e.,g
can be taken equal to 1 anddvz/dt equal to]vz/]t, with
errors of order«4, so that

1

c

]

]t S h

nmc2
vz
c D52

1

nmc2
]p

]z
2s

]w

]z
2
nmc2

h

]

]z SA2

2 D .
~20!

From Eq. ~20! we can seea posteriori that indeed
vz/c;O(«2) as assumed, since the first and second term
ti-

,

w

r

,
o

-

r

on

the RHS must be of the same order as the third one. Th
longitudinal quantities originate from the wave through t
Lorentz force, here represented by the last term in the R
In fact, Eqs.~15! and~17! confirm these estimates; i.e., de
sity perturbations and electric potential are of the same o
asvz .

Finally, we perform an expansion of the thermodynam
quantities about the ~constant! equilibrium state as
n5n01n8, h5h01h8, wheren8,h8 areO~«2!. We obtain,
using Eq.~9!

vx
c

52s
mc2n0
h0

AF12
1

2 Smc2n0
h0

D 2A21
n8

n0
2
h8

h0
G1O~«4!,

~21!

1

c

]

]t

vz
c

52
1

h0
S dpdnD

0

]n8

]z
2sS n0mc2

h0
D ]w

]z

2
1

2

]

]z F S n0mc2

h0
D 2A2G1O~«4!, ~22!

where (dp/dn)0 is the adiabatic pressure derivative eva
ated in the equilibrium state. We also neednL5gn in Eqs.
~15!–~17!, and settingnL5n01nL8 , we have

nL8

n0
5
n8

n0
1
1

2 S n0mc2

h0
D 2A21O~«4!, ~23!

so that Eq.~15! reduces to

]

]t

nL8

n0
52

]

]z
vz . ~24!

It is convenient to define two constantsd andh as

d[
Gp0
h0

, h[
n0mc2

h0
.

Taking into account thatp5DGn
G ~with DG[p0/n 0

G! we find
that

n8

n0
2
h8

h0
52d

n8

n0
52dS nL8n02

1

2
h2A2D . ~25!

Eliminating vz from Eqs.~22! and ~24!, we obtain

S 1c2 ]2

]t2
2d

]2

]z2D nL8

n0
5hs

]2w

]z2
1
1

2
~12d!h2

]2

]z2
A2.

~26!

Summing Eq.~26! for electrons and positrons, the electr
potential is eliminated, and defining the normalized sum
the perturbed densities asN[(nLp8 1nLe8 )/n0, we get

S 1c2 ]2

]t2
2d

]2

]z2DN5~12d!h2
]2

]z2
A2. ~27!

The difference of Eq.~26! for electrons and positron
eliminatesA2, and settingM[(nLp8 2nLe8 )/n0, we have

S 1c2 ]2

]t2
2d

]2

]z2DM52h
]2w

]z2
. ~28!
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Since this equation is uncoupled from the electromagn
wave, we can choose the solutionM5w50 if we want to
study only the longitudinal disturbances generated by
wave. Then,nLp8 5nLe8 and vzp5vze. Thus, Eq.~27! is the
equation for the phonons driven by the ponderomotive fo
of the electromagnetic wave. There is no separation
charges and no electrostatic field in the positron-elect
plasma, to this order of approximation. Plasmons are gi
by Eq.~28!, but for our purposes we assume that they are
present in the system.

We now introduce the expressions~21!, ~23!, and~24! in
~16!, and neglectingO~«4! terms we find

S ]2

]t2
2c2

]2

]z2DA12vp
2hA5vp

2~12d!hA~h2A22N!,

~29!

wherev p
2[4pe2n0/m is the square of the electron~posi-

tron! plasma frequency. It is therefore convenient to use n
variables,

ẑ[Ahz, t̂[Aht, Â[hA, ~30!

so that we finally write the coupled equations for the wea
nonlinear wave~correct to order«3! as

S ]2

] t̂2
2c2

]2

] ẑ2
D Â12vp

2Â5vp
2~12d!Â~Â22N!, ~31!

S 1
c2

]2

] t̂2
2d

]2

] ẑ2
DN5~12d!

]2

] ẑ2
Â2, ~32!

whereÂ ~andN! must be small with respect to unity.
For low thermal energies, case~a!,

h512
3

2
d, d5

vs
2

c21~3/2!vs
2 !1,

wherev s
25(5/3)p0/(mn0) is the classic speed of sound.

For ultrarelativistic~random! energies, case~b!,

d5
1

3
, h!1.

The speed of sound is given now byv s
25dc25(1/3)c2.

V. DERIVATION OF THE NONLINEAR
SCHRÖDINGER EQUATIONS

We introduce now an important new element in t
model: a phenomenological damping term for the phono
References@7,21# discuss the nature of the noncollision
absorption of sound and longitudinal waves in a relativis
positron-electron plasma. Here we focus our attention on
effect of a phonon damping raten on the self-modulation of
the transverse wave.

The main result of the present section is that relativis
temperatures and phonon damping produce substa
changes in the NLS. The consequences for the stability of
envelope are then examined in Sec. VI.

To simplify the notation we write the equations of Se
ic

e

e
f
n
n
ot

w

y

s.

c
e

c
ial
e

.

IV, adding now the damping as

~] t
22c2]z

212vp
2!A5~12d!vp

2A~A22N!, ~33!

~] t
22vs

2]z
21n] t!N5~12d!c2]z

2A2. ~34!

Here, in case~a! ~nonrelativistic thermal energy! d5v s
2/c2,

v s
25(5/3)p0/(mn0), t and z are the natural variables an

A,N are defined as in Secs. III and IV. However, for case~b!
~ultrarelativistic thermal energy! d51/3 andv s

25c2/3. More-
over, A stands here forÂ, and t,z represent the reduce
variablest̂,ẑ of Sec. IV. Thus for applications to case~b!, the
formulas of this section must be first rescaled to ordin
time-space variables and to the normalized potentialA.

To derive the nonlinear Schro¨dinger equation we apply
the time-space multiscale perturbation technique to Eqs.~33!
and ~34! @22#.

We formally write

A5«A11«2A21«3A31O~«4!,

N5«N11«2N21«3N31O~«4!, ~35!

n5n01«n11«2n21«3n31O~«4!,

with «!1. The expansion ofn in powers of« allows treat-
ment of weaker dampings by takingn050, n05n150, etc. To
the lowest significant order

A15aeiu1a* e2 iu, N150, ~36!

where u5kz2vt is the fast variable andk,v satisfy the
dispersion relation

D~v,k!52v21k2c212vp
250, ~37!

for the transverse electromagnetic wave. For application
case~b! ~as commented above! we must note that true value
for k,v are k/Ah, v/Ah, since herez,t represent the
reduced variables~30!. The amplitudesa,a* , in Eq. ~36! are
taken as slow variables, and the perturbative expansion
sumes thatA2,35A2,3(a,a* ,u), N2,35N2,3~a,a* ,u!. The
space-time dependence of the higher order correction
througha, a* , andu only. The multiscale technique is in
troduced by the following expansions

]a

]t
5«T1~a,a* !1«2T2~a,a* !1«3T3~a,a* !1O~«4!,

~38!

]a

]z
5«Z1~a,a* !1«2Z2~a,a* !1«3Z3~a,a* !1O~«4!,

~39!

and the corresponding complex conjugates. We have

]z5k]u1«~Z1]a1Z1* ]a* !1O~«2!, ~40!

] t52v]u1«~T1]a1T1* ]a* !1O~«2!. ~41!
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Care must be taken to remove secularities at each pe
bative order. Applying the perturbative procedure and se
rating powers of« we obtain from Eq.~33! the equation for
A2 ~for order«2!,

2vp
2S ]2A2

]u2
1A2D22iv~T11vgZ1!e

iu1c.c.50, ~42!

where vg5c2k/v is the group velocity derived from Eq
~37!. To eliminate the secular solution ofA2 in Eq. ~42! we
require

T11vgZ150. ~43!

Consequently, we can write

]a

]t1
1vg

]a

]z1
50, ~44!

neglectingO~«! terms. Therefore, up to order«2, the ampli-
tude is constant in time if we move with the wave pack
speed. The amplitude modulation is revealed at the next
der of the perturbation theory. The solution of Eq.~42! is

A25Beiu1B* e2 iu, ~45!

whereB5B(a,a* ) is an arbitrary function of the slow vari
ables.

Introducing the operator

P5Z1]a1Z1* ]a*52
1

vg
~T1]a1T1* ]a* !,

Eq. ~34! is expressed as

$~v]u1«vgP!22vs
2~k]u1«P!22n0~v]u1«vgP!%N

5~12d!c2~k]u1«P!2A2. ~46!

To order«2 we find that
e

r-
a-

t
r-

~v22vs
2k2!

]2N2

]u2
2vn0

]N2

]u
524~12d!c2k2a2e2iu1c.c.

~47!

To avoid a secular behavior ofN2 we must exclude the so
lution exp~a1u! with a15vn0/~v

22v s
2k2!. Therefore, we get

N25aa2e2iu1c.c.1C~a,a* !, ~48!

wherea is a complex parameter defined by

a5
~12d!c2k2

v~v1 in0/2!2vs
2k2

~49!

andC(a,a* ) is an arbitrary real function of the slow var
ables.

From the order«3 in Eq. ~34! we obtain

~v22vs
2k2!

]2N3

]u2
1n0v

]N3

]u

52a@an0vgZ11 ian1va24iaZ1~vgv2vs
2k!

14~12d!c2k~ iZ12kB!#e2iu1c.c.1n0vgPC. ~50!

Examining Eq.~50! we find that to avoid secularities inN3 it
is necessary that

n0PC50. ~51!

No other information is needed from Eq.~50!.
Finally the equation forA to third order, taking into ac-

count the results already obtained, gives
F]2a

]t1
22c2

]2a

]z1
222iv~T21vgZ2!Geiu1c.c.12vp

2S ]2A3

]u2
1A3D 5~12d!vp

2@~12a!a3e3iu1@~32a!uau22C#aeiu#1c.c.

~52!
ent

s

From Eq.~52! it follows that the equation that eliminates th
secularity ofA3 is

22iv~T21vgZ2!1
]2a

]t1
22c2

]2a

]z1
2

5~12d!vp
2a@~32a!uau22C#. ~53!

Using previous results and]vg/]k5(1/v)(c22v g
2) we can

write Eq. ~53! in the form of a NLS equation

i
]a

]t
1
1

2

]vg
]k

]2a

]j2
1
1

2
~12d!

vp
2

v
a@~32a!uau22C#50,

~54!
where we have introduced the space-time variables

t5t25«t15«2t,

j5
1

«
~z22vgt2!5z12vgt15«~z2vgt !. ~55!

We shall show now that the value ofC depends on the
intensity of the damping. Basically, there are three differ
cases:~i! n0.0 ~order-one damping!, ~ii ! n050 and n1.0
~weak damping!, and ~iii ! n05n150 and n2.0 ~ultraweak
damping!.

In case~i!, n0.0, to comply with Eq.~51! C cannot de-
pend ona or a* : it must be an absolute constant. It follow
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that C50, since fora50 the density disturbance must b
absent, so thatN250. Thus we obtain a NLS equation wit
complex coefficients, sincea is complex @Eq. ~54! with
C50#.

In case~ii !, when n050, the elimination of secularities
follows a different route; Eq.~50! no longer provides infor-
mation aboutC(a,a* ). The value ofC can be determined
from Eq. ~34!, noting that it is exact to order«3 for the
u-dependent terms, but that it is valid to order«4 for the
slowly varying terms~those that depend ona anda* , but not
on u!. Thus, we find that

SP2
n1vg
vg
22vs

2DPC~a,a* !5
2~12d!c2

vg
22vs

2 P2~aa* !. ~56!

Integration of this equation gives

C5C0uau22C0C1e
C1jE

j

`

e2C1zuau2dz, ~57!

with C052(12d)c2/(v g
22v s

2), andC15n1vg/(v g
22v s

2).
Therefore the NLS equation takes the form

i
]a

]t
1
1

2

]vg
]k

]2a

]j2
1

~12d!vp
2vg

2kc2 F S 32
~12d!c2k2

v22vs
2k2

2C0D
3uau21C0C1e

C1jE
j

`

e2C1zuau2dzGa50. ~58!

In case~ii !, C1Þ0, the NLS becomes an integrodifferenti
equation.

Finally, for an ultraweak damping, case~iii !, Eq. ~57!
holds withC150, so that

C5
2~12d!c2uau2

vg
22vs

2 ~59!

anda is real. This ultraweak damping result reproduces,
classical temperatures, the NLS equation obtained in@17#,
which was derived for a positron-electron plasma with no
relativistic temperatures (v s

2!c2) without damping effects.

VI. EFFECT OF PHONON DAMPING
AND RELATIVISTIC TEMPERATURES:

MODULATIONAL INSTABILITY

A. Order O„1… damping

We report now on the envelope instability for dampi
effects of order O~1!. For consistency we assum
«!n0/v!1. We have a nonlinear Schro¨dinger equation with
complex coefficients, which we will write as

i
]a

]t
1p

]2a

]j2
1qauau250, ~60!

with

p5
1

2

]vg
]k

5
vp
2c2

v3 , ~61!
r

-

qr5Re~q!5
~12d!vp

2

2v S 32
~12d!c2k2~v22vs

2k2!

~v22vs
2k2!21~n0v/2!2

D ,
~62!

and

qi5Im~q!5
n0
4

~12d!2vp
2c2k2

~v22vs
2k2!21~n0v/2!2

, ~63!

where we assume thatuqi u!uqr u.
Let us consider a solution of Eq.~60! of the form

ā~j,t!5
a0

A112qia0
2t

expH i S k0j2pk0
2t1E ḟdt D J ,

~64!

whereḟ(t)5qra 0
2/(112qia 0

2t), anda0 is a real constant.
This solution decays slowly~i.e., not exponentially! in time.

We now introduce small perturbationsda1,2 to the solu-
tion

a~j,t!5ā~j,t!1da1expH i F ~K1k0!j2pk0
2t

2E ~V2ḟ !dt G J 1da2expH 2 i F ~K2k0!j

1pk0
2t2E ~V*1ḟ !dt G J ~65!

and linearize. The following equations hold:

~V22pk0K12iqi uāu22pK21qr uāu2!da11quāu2da2*50,
~66!

quāu2da1*1~2V*12pk0K12iqi uāu22pK21qr uāu2!da2

50. ~67!

Thus,V(K) is given by

V224~pk0K2 iqi uāu2!V14~pk0K2 iqi uāu2!2

1~ uqu21qi
2!uāu42upK22quāu2u250, ~68!

or, alternatively,

V52~pk0K2 iqi uāu2!6Ap2K422pqr uāu2K22qi
2uāu4,

~69!

whereuāu25a 0
2/(112qia 0

2t).
Conditions for instability arise for values ofK where the

expression S(K)5p2K422pqr uāu2K213q i
2uāu4 becomes

negative. Thus we find an instability band in the interv
(K1 ,K2) with

K1,25F uāu2
qr
p

6S uāu4
qr
2

p2
23uāu4

qi
2

p2D
1/2G1/2. ~70!

Note that the growth rate is maximum whenS(K) is mini-
mum, that is, for KM5(uāu2qr /p)

1/2, and its value is
I~V!5uāu2(uqu22qi). A stability diagram is shown in Fig. 1
where in a semilogarithmic graph the ordinatesY1 ,Y2 rep-
resentK1 ,K2 , measured in units of«uāu/d, versus the ab-
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scissax5v/A2hvp @hered5c/(A2hvp)#. The instability
occurs forY1,Y,Y2 . In the figure the lines are represent
for two damping values,n/A2hvp50.05 and 0.5. In addi-
tion the figure shows lines for two temperature values. T
lines are dash-dotted forvs/c50.01 and full for 1/).

We can see in Fig. 1 that the temperature range, class
ultrarelativistic, has some influence on the boundaries of
unstable region. The rangeY1–Y2 , at a given frequency, is
narrower at high energies. The lower boundary is also se
tive to changes of the parameter,n/A2hvp , while the effect
on the upper boundary is negligible. The boundaryY1 in-
creases by an order of magnitude when the damping is
creased ten times, and so the unstableK interval decreases
The region of instability exists for all frequencies of th
wave, but the growth rate tends to zero asv→`. Note that,
while the characteristics of the instability region depend
the presence of finite damping, the direct effect ofn0 on the
growth rate ~in view of the assumptionuqi u!uqr u! is not
crucial. The instability persists even in the limitn0/v→0.

We give now quick estimates of order of magnitude
the growth rate and characteristic wavelength of the mo
lational instability. Restoring true time and space variab
the dispersion relation of the electromagnetic wave is gi
by v252v p

2h1k2c2. At ultrarelativistic temperatures wher
h!1, the plasma frequency cutoff decreases substanti
Waves can propagate at lower frequencies than in clas
plasmas at the same density. This effect is due to the
creased inertia, stored in very large thermal energies. In

FIG. 1. Stability diagram for finite phonon damping,n0Þ0.
The semilogarithmic plot shows (Y1 ,Y2)5(K1 ,K2)d/euāu (d
5c/A2hvp), as functions ofx5v/A2hvp . The instability occurs
for Y,x values comprised between the upper lineY2 and the lower
line Y1. The boundariesY1 ,Y2 are shown for two values o
n/A2hvp50.05 and 0.5, to illustrate the effect of changes in t
value of damping. The figure indicates also variations when te
perature changes from classical to ultrarelativistic values. The l
Y1 ,Y2 are dash-dotted forvs/c50.01, and full for 1/).
e
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pressions~62! and ~63! for qr ,qi we must similarly replace
v p
2 by v p

2h when we return tov, k values associated to th
original t,z variables. We also havep5v p

2hc2/v3 from Eq.
~61!.

It is easy to see that over the wholek range,
qr;O(v p

2h/v) ~sincen/v!1 andv s
2 can be at mostc2/3!.

Thus, passing fromKM to the true wave number, we find tha
kM;«uā0uv/c. We have introduced a collisionless sk
depth d5c/A2hvp with the effective plasma frequency
Then, lM/2p;d/«uā0u when k

2d2!1, while lM;l/«uā0u
whenk2d2@1. The ultrarelativisticd is much larger than the
classical value~at the same density!. Thus, the length of the
packet modulation increases with increasing temperature
the relativistic domain.

Since uqi /qr u!1 over the wholev range, we estimate
uqu22qi;qr . This gives us an order of magnitude fo
g[I~V! in true space-time scales,g;«2uā0u

2qr
;«2uā0u

2hv p
2/v. Hence, we conclude that

g;«2uā0u2vpAh for k2d2!1, ~71!

and

g;«2uā0u2vpAh/kd for k2d2@1. ~72!

The modulational instability is faster for large wavelengt
of the electromagnetic wave, and the growth rate is redu
by ultrarelativistic temperatures.

Finally, we check the consistency of the predicted ins
bility with the decay of the amplitudeā~t! given by Eq.~64!.
The decay ratem of the chosen solution due to the imagina
part of q is given bym;«2uāu2qi . Therefore,g/m;qr /
qi;v/n@1. The instability will develop much faster tha
the decay time of the amplitude. Thus, we confirm that
wave becomes modulationally unstable before decay by
sorption

B. Weak damping

In the weak damping case~n050, n1Þ0! the correspond-
ing NLS equation for the amplitude is given by Eq.~58!. The
analysis of this case shows greater complexity. The integ
differential NLS has a solution of constant envelope of t
form ā(j,t)5a0exp$ i (k0j2v0t)%, with a0 a real constant.
This solution has the peculiarity thatC given by Eq.~57! is
zero. Thus the nonlinear wave with constant envelope is
scribed by the same NLS of Sec. V, case~i!, but with reala,
since heren050.

The small perturbations of this solution are a differe
matter, since the constantC given by Eq.~57! is not zero in
this case. Perturbing the solution as

a~j,t!5ā~j,t!1da1exp$ i @~K1k0!j2~V1v0!t#% ~73!

1da2exp$2 i @~K2k0!j2~V*2v0!t#% ~74!

we find that in order to satisfy Eq.~58!, V andK must be
related by

-
s

S V22pk0K2~pK22qa0
2!1 irC 0a0

2 K~C11 iK !

C1
21K2 D da21S q1 irC 0

K~C11 iK !

C1
21K2 Da02da2*50, ~75!
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S q1 irC 0

K~C11 iK !

C1
21K2 Da02da22S V22pk0K1~pK22qa0

2!2 irC 0a0
2 K~C11 iK !

C1
21K2 D da2*50, ~76!

wherep is the same as in Eq.~61!, q is equal toqr of Eq. ~62! with n050, andr5(12d)v p
2vg/2kc

2 . Consequently, the
following dispersion relation holds:

V52pk0K6Ap2K422pFq2rC0

K2

C1
21K2Ga02K222irpC0a0

2 C1K
3

C1
21K2. ~77!
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From this equation we conclude that conditions for t
modulational instability can be achieved at any wave f
quency. The imaginary term in the square root is a sourc
instability for all values ofv andK. This term depends on
the dampingn1 and disappears whenn1→0. The destabiliz-
ing effect of the imaginary term, for fixed frequency, i
creases at large values ofK, but becomes negligible whe
vg→0 instead, i.e., for large wavelengths, whenv is close to
&vp .

On the other hand an instability can also arise, indep
dently from the dampingn1, when the sum of the real term
in the square root is negative. This may happen~under re-
strictive conditions onv andK! even ifC1 is negligible. We
shall comment upon the conditions for this instability in Se
VI C. Finally, let us note that putting formallyC050 as a
control of the dispersion relation, we reobtain the proper
of the dispersion relation of Sec. VI A in the limitn0→0. In
fact settingC050, Eq. ~58! coincides with Eq.~60! with
n050.

C. Ultraweak damping

The ultraweak damping is ruled by a NLS equation sim
lar to that obtained in@17#. However, when temperatures a
relativistic, in our extended equation it is easier to satisfy
conditionv g

25c2(c2k2)/v2,v s
2, sincev s

25c2/3, so thatC
becomes a real negative coefficient in Eq.~54!. Furthermore
d51/3, and so there is a reduction ofC with respect to the
classical value. It follows from basic NLS theory that wh
the coefficient of the cubic term is positive~since]vg/]k.0!
a constant wave envelope is modulationally unstable.

We find, after rescaling variables, an unstable freque
interval, A2hvp<v,1.2247A2hvp . When the tempera
ture is nonrelativistic, the unstable frequency interval
&vp<v,&vp(12v s

2/2c2) instead. Sincev s
2/c2!1, the

unstable frequencies are restricted to a very small inte
close to&vp , whose width tends to zero for a cold plasm
Conversely, as the temperature grows the unstable frequ
interval increases, and becomes a finite frequency ban
ultrarelativistic temperatures.

Following the procedures of Secs. VI A and VI B~or tak-
ing the limit n1→0 in the dispersion relation of Sec. VI B!
it is easy to find that perturbations of the for
exp$i (Kj2Vt)% are unstable when 0,K,ua0uA2q/p5Kc
for q.0, with a growth rate given by I(V)
5A2pqua0uK22p2K4. Here, we use the notation o
Eq. ~60!, and a0 is the amplitude of a constant envelop
solution. The maximum growth rate,I~V!5ua0u

2q, occurs
at K5Kc/&. The values ofp,q to be used here~with-
-
of

n-

.

s

-

e

y

s

al
.
cy
at

out rescaling! are p5v p
2c2/v3, and q5@(12d)vp

2vg/
2kc2#@32(12d)c2k2/(v22vs

2k2)22(12d)c2/(vg
22vs

2)#.
The modulational instability described here is characte

tic of a physical regime with zero phonon damping, sincen2
does not enter in the equations at this order of the pertu
tion theory. Comparing the results of this section with tho
of Sec. VI B, we conclude that a small amount of dampi
@i.e.,n;O(«)# destabilizes the wave inK-v regions that are
stable in an ideal dissipationless system. Further increas
damping@i.e., n;O~1!# as in Sec. VI A, restricts again th
instability to a particularK-v region, which is nevertheles
wider than that of the ideal case considered in this section
shown in Fig. 1.

VII. DISCUSSION AND CONCLUSIONS

We have studied the modulational instability of a linea
polarized, strong electromagnetic wave, in an unmagnet
positron-electron plasma, using relativistic two-fluid hydr
dynamics to properly account for physical regimes of ve
high temperatures. The nonlinear wave is coupled with l
gitudinal oscillations via the Lorentz force. A relativistic co
rection for slow motion, as well as the effect of density var
tions on wave propagation, are taken into account. We h
also included different degrees of phonon damping in
treatment. The model can be reduced to a pair of exten
Zakharov equations,~33! and ~34!. We may recall that the
well-known Zakharov equations for longitudinal Langmu
waves in the usual ion-electron plasma, are derived by t
averaging over fast variables, so that a term like]zzuEu2 ap-
pears as driver of sound waves. However, in the case
electromagnetic waves in ane1-e2 plasma, we have ob
tained Eqs.~33! and~34! without averaging procedures, an
they are exact to third order in the expansion parame
Thus, a term]zzA

2 appears in Eq.~34!, without absolute
value or time average.

The envelope modulation is then studied deriving the c
responding NLS equation, using multiscale perturbat
analysis. According to the intensity of the damping we o
tain three different types of NLS. The coefficients of th
NLS also change with classical or relativistic temperatur
Table I summarizes all cases treated for easier referenc
view of possible applications, equations in Table I are w
ten with ordinary time-space, and frequency–wave num
variables, instead of the special scalings used for mathem
cal convenience in the text. The table gives the cubic N
term for finite, weak, and ultraweak damping. In each ca
the explicit form, for classic and ultrarelativistic temper
tures, is presented. Short notes on stability and condition
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TABLE I. A summary of NLS equations.

i ] t̄ 1 p̄]
j̄ j̄

2
a1D(a)50, t̄5«2t, j̄5«(z2vgt), v f5v/k

v252hv p
21c2k2, vg5kc2/v, p̄5hv p

2c2/v3; t,z,v,k: ordinary variables
Damping T D(a) cubic term Notes

n0 Classic
D5F32vp

2

v S12
c2~vf

22vs
2!

~vf
22vs

2!21~n0vf/2k!2
D

1 i
n0

4

vp
2c2/k2

~v f
22vs

2!21~n0v f /2k!2
Gauau2

(vs/c)
2!1, h51

unstable for allv

Finite Ultrarelativistic
D5Fvp

2h

v S12
2

9

c2~vf
22c2/3!

~v f
22c2/3!21~n0v f /2k!2

D
1 i

n0

9

vp
2hc2/k2

~v f
22c2/3!21~n0v f /2k!2

Gauau2

h!1
unstable for allv

«n1 Classic
D5

3

2

vp
2

v F S 12
1

3

c22vs
2

v f
22vs

22
2

3

c22vs
2

vg
22vs

2D uau2

1
2

3

c22vs
2

vg
22vs

2 C1e
C1jE

j

`

e2C1zuau2dzGa
(vs/c)

2!1, h51
unstable for allv

C15
n1vg
vg
22vs

2

Weak Ultrarelativistic
D5

vp
2h

v FS12
2

9

c2

vf
22c2/3

2
4

9

c2

vg
22c2/3D uau2

1
4

9

c2

vg
22c2/3

C1e
C1AhjE

Ahj

`

e2C1zuau2dzGa
h!1
unstable for allv

C15
n1vg

vg
22c2/3

«2n2 Classic
D5

3

2

vp
2

v S 12
1

3

c22vs
2

v f
22vs

22
2

3

c22vs
2

vg
22vs

2D auau2
(vs/c)

2!1, h51
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parameters are added. We see that the cubic term is loc
finite and ultraweak damping cases, but it becomes spat
nonlocal for weak damping, the corresponding NLS be
integrodifferential. Two results can be emphasized.~i! Rela-
tivistic temperatures do alter the stability result found in@17#
for low temperature~zero damping,e1-e2! plasmas, by en-
larging the range of unstable frequencies, which now ta
place from 1 to about 1.22 times the relativistic plasma f
quency. ~ii ! Phonon damping also produces substan
changes in the NLS, which then predicts unstable envelo
at all frequencies, except in the ultraweak case, i.e., when
damping rate is of second order in the expansion param

It is also interesting to note that weak damping produ
the largest destabilizing effect. With zero damping the mo
lational instability occurs in a restrictedv interval and
in
lly
g

s
-
l
es
he
er.
s
-

0,K,Kc . With finite damping it happens for all frequen
cies in a limited bandK1,K,K2 . But for weak damping a
modulational instability occurs without restrictions, for a
K, v values. Thus, an ideal dissipationless system is
prone to the instability than a system with a small amoun
damping. Analogies can be found in other branches
plasma physics: a small amount of resistivity destabiliz
ideal magnetohydrodynamic modes; a small amount of
cosity affects the stability of ideal flows.

The unstable wavelengths of the perturbed envelope
the growth rate of the instability have been computed for
three cases of finite, weak, and negligible damping. It is g
erally recognized that the growth rate of the modulatio
instability can give estimates of the time of formation
solitons. The model with relativistic temperatures may
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used for discussions on early Universe plasmas, from
phase of neutrinos decoupling and disappearance of m
to the time of annihilation of positron and electrons. That
from about 1024 s to 1 s, or better, in temperature epoc
from approximately 100 to 1 MeV. Radiation pressure, th
acts to provide ‘‘springiness’’ to acoustic oscillations. How
ever, specific analysis of that system~or other astrophysica
scenarios like AGN, where high temperature positro
electron plasmas are expected! exceeds the scope of this p
per. We limit ourselves to a discussion of conditions of a
plicability of the theory.

In primordiale1-e2 plasmas, densities are considered
be in the 1033–1028-cm23 range, so that the plasma fre
quency, assumingh50.01, is very high, above 1018 rad/s.
The time scale of the instability in this scenario, assum
finite phonon damping, can be estimated to be as sma
10211 s, taking«50.01 ~see Sec. VI A! and therefore during
that time the expansion of the Universe is negligible. Th
low frequency electromagnetic waves,\v!T, could gener-
ate density inhomogeneities and leave imprints in
plasma, at earlier times than the recombination era. Th
structures, which perhaps may act as seeds of forthcom
gravitational developments, should run completely unde
ted in the present highly isotropic 3-K radiation backgroun
which reflects dominant radiation at\v.T of earlier epochs
@7#. On this subject Ref.@25# contains interesting recent wor
for unmagnetizede1-e2 plasmas. This reference studies t
formation of solitons in early Universe scenarios, usi
positron-electron fluid dynamics with relativistic temper
tures, in the framework of circularly polarized electroma
netic waves.

The choice of a proper phonon damping to be emplo
in the study of a particular physical system requires furt
analysis. For this purpose, a kinetic treatment of acou
oscillations ofe1-e2 , driven by the ponderomotive effect o
an electromagnetic pump wave, should be developed to
tain an estimate of the collisionless damping. This is
available yet, as far as we know. For classical temperatu
free ~not driven! acoustic modes without electric field do n
exist in a collisionlesse1-e2 plasma@10#, although such
acoustic waves do appear in a fluid-theoretical treatm
Conversely, at relativistic temperatures and in the prese
of radiation pressure, acoustic waves can be sustained
collisionlesse1-e2 plasma.

For early Universee1-e2 plasmas, Ref.@7# provides an
approximate dispersion relation for phonons@Eq. ~115! in
that reference# derived from Vlasov equations that incorp
rate radiation pressure as external force. Unfortunately,
approximation given in@7# is not relativistic, so that the pho
non phase velocity does not correspond toc/) @from Eq.
~115! in @7#, the rootv/kc52.17302 i0.7331, can be ob
tained#. A relativistic derivation of the dispersion relation o
phonons driven by radiation pressure in ae1-e2 plasma is
still not available.

For applications of our theory we may conjecture, nev
theless, taking the estimate of@7# as a rough trend, that pho
non absorption is small when the frequency of the elec
magnetic wave approaches the plasma frequency cutoff,
at very small wave numbers. It becomes, then, increasin
large as the frequency of the electromagnetic wave gr
above the plasma frequency, that is, for large wave numb
e
ns
s
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Thus, fore1-e2 plasmas with radiation pressure, we expe
that the phonon damping regime changes with the freque
of the transverse wave: from ultraweak, forv very close to
the plasma frequency, to weak or finite, when we consi
waves with increasingly larger frequencies. The modu
tional instability, therefore, is due to relativistic temperatu
effects ~ultraweak case! for frequencies nearA2hvp . At
higher frequencies the ultraweak case predicts stability,
we expect that the phonon damping becomes stronger. T
the modulational instability should appear also at tho
higher frequencies, induced now by phonon damping effe
~weak and finite cases!.

Several references consider the effect of an ambient m
netic field on nonlinear electromagnetic waves processe
e1-e2 plasmas~see literature quoted in the Introduction!.
However, the work up to the present has been mainly
circularly polarized waves. Circularly polarized waves pe
mit some simplifications of the calculations. Reference@26#
contains an important contribution to the modulational ins
bility of electromagnetic waves in magnetized plasmas w
classical temperatures, for propagation parallel to the m
netic field. The concern of@26# is primarily the ordinary
ion-electron plasma, and the positron-electron case is tre
as a special limit. Thus, this work also deals with circula
polarized waves. A magnetic field introduces new featu
and the modulational instability occurs over a broad band
low frequencies, below the cyclotron resonance.

However, in a positron-electron plasma with a magne
field, the natural electromagnetic modes for parallel pro
gation are linearly polarized waves. In Cartesian coordina
the dielectric tensor is diagonal, since off-diagonal ter
compensate exactly. Circularly polarized solutions are a s
cial linear superposition of natural modes, with a rather p
ticular phase relationship. The situation is the opposite
that of more common ion-electron plasmas, where the cir
larly polarized representation diagonalizes the dielectric t
sor. In fact, observations of pulsars, radio sources expe
to have e1-e2 magnetospheres with very large magne
fields, often indicate dominance of linearly polarized wav
@1#. In addition, it is not possible, of course, to use line
combination of solutions when dealing with nonline
waves, so that results on the modulational instability of c
cularly polarized waves do not apply to linearly polariz
waves, and vice versa. In this sense, the theory of s
modulational instability of electromagnetic waves in a ma
netizede1-e2 plasma is still not complete.

In physical regimes where the plasma frequency is m
larger than the cyclotron frequency, and for high-frequen
electromagnetic waves propagating parallel to the magn
field above the plasma frequency, the dispersive proper
approach those of an unmagnetized plasma. In the primor
plasma these conditions would apply since the magn
field, if any, is supposed to have been very weak, while
plasma density was huge. Moreover, at relativistic tempe
tures the ratio of cyclotron to plasma frequencies is furt
reduced by the effect of inertia enhancement. Thus,
theory can be applied to early Universe scenarios, and
cases of unmagnetized plasmas in AGN. For configurati
with important magnetic fields, such ase1-e2 in pulsars, or
confined in laboratory experiments, it may be relevant o
under restricted conditions, i.e., in the high frequency lim
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At lower frequencies, linearly polarized Alfve´n solitons in
cold e1-e2 plasmas have been recently derived@27#.

Summarizing, our work extends previous analyses of
early polarized electromagnetic waves in nonmagneti
plasmas, showing that if the phonon damping isO~«0! or
O~«1!, a modulational instability appears in the electro
positron case in all ranges of temperature and wave freq
cies. Thus the presence of some amount of sound absor
helps to produce an envelope decay. When the pho
damping is very small@O~«2!# the result of@17# is recovered,
but if the temperature is ultrarelativistic the se
modulational instability is present again in a finite frequen
range.

Finally, the set of equations~31! and ~32! is more basic
than the NLS for the nonlinear analysis of the electrom
netic wave properties and propagation in electron-posit
o-

.
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p

m

ys

A.
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-
d
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n

plasmas. Thus,~31! and ~32! provide a framework, exact to
O(A3), for further analytical or numerical studies of th
problem.
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